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ABSTRACT 

 
We constructed and internally validated an artificial 
neural network (ANN) model for prediction of 
in-hospital major adverse outcomes (defined as death, 
cardiac arrest, coma, renal failure, cerebrovascular 
accident, reinfarction, or prolonged mechanical 
ventilation) in patients who received "on-pump" 
coronary artery bypass grafting (CABG) surgery. We 
retrospectively analyzed a 5-year CABG surgery 
database with a final study population of 563 patients. 
Predictive variables were limited to information 
available before the procedure, and outcome variables 
were represented only by events that occurred 
postoperatively. The ANN's ability to discriminate 
outcomes was assessed using receiver-operating 
characteristic (ROC) analysis and the results were 
compared with a multivariate logistic regression (LR) 
model and the QMMI risk score (RS) model. A major 
adverse outcome occurred in 12.3% of all patients and 
18 predictive variables were identified by the ANN 
model. Pairwise comparison showed that the ANN 
model significantly outperformed the RS model (AUC = 
0.886 vs.0.752, p = 0.043). However, the other two 
pairs, ANN vs. LR models (AUC = 0.886 vs. 0.807, p = 
0.076) and LR vs. RS models (AUC = 0.807 vs. 0.752, p 
= 0.453) performed similarly well. ANNs tend to 
outperform regression models and might be a useful 
screening tool to stratify CABG candidates 
preoperatively into high-risk and low-risk groups. 
 

INTRODUCTION 
 
CABG surgery is one of the most commonly performed 
major operations in the developed countries. 
Traditionally, operative mortality has been the primary 
criterion for judging the quality of surgical results, and 
several models have been developed to predict 
mortality based on preoperative data. However, death 
after CABG surgery is an uncommon event, with an 
incidence of <4%. The ability to predict operative 
mortality is important to patients, families, and 
physicians, but it is an inadequate method of 
determining surgical outcome1,2. The frequency of 

major morbidity and mortality after CABG can vary 
widely across institutions and surgeons. Comparisons 
of mortality rates without considering morbidity may 
reach incorrect conclusions regarding quality of care. 
Major morbidity is more common than mortality after 
CABG and might have greater economic importance 
because it results in a prolonged hospital stay and 
greater utilization of health care resources. 
 
ANNs are computer models composed of parallel, 
nonlinear computational elements (“neurons”) arranged 
in highly interconnected layers with a structure that 
mimics biologic neural networks. The ANN can be 
trained with data from cases that have a known 
outcome. The network can evaluate the input data, 
recognize any pattern that may be present, and apply 
this knowledge to the evaluation of unknown cases. In 
the analysis of large data sets, ANNs have the 
advantage of relative insensitivity to noise while having 
the ability to discover patterns that may not be apparent 
to human observers3. Recently, there has been 
widespread interest in using ANNs for an extraordinary 
range of problem domains, in areas as diverse as 
finance, physics, engineering, geology, and medicine. 
Anywhere that there are problems of classification, 
prediction, or control, ANNs are being introduced4,5,6. 
 
In this study, we performed a cross-sectional study to 
develop an ANN model based entirely on preoperative 
clinical and laboratory data for predicting postoperative 
major adverse outcomes for patients who received 
“on-pump” CABG surgery. 
 

METHODS 
 
Patient selection and chart review 
 
The study was conducted in Taiwan at Shin Kong Wu 
Ho-Su Memorial Hospital, which provides urban 
tertiary care in Taipei city. Patients enrolled in the study 
included all patients who received a CABG surgery 
from June 1997 to May 2002. Cases with concomitant 
surgeries were excluded. “Off-pump” procedures that 
did not require intraoperative cardiopulmonary bypass 



were also excluded. The final cohort, consisting of 563 
patients, was randomly divided into 2 mutually 
exclusive datasets: the derivation set (n = 423) and the 
validation set (n = 140). The derivation set represents 
approximately 3/4 of the entire cohort (1/2 for training, 
1/4 for cross-verification), and the validation set 
represents 1/4 of the cohort. The study protocol was 
approved by the Institutional Review Board (IRB). 
 
Predictive and predicted variables 
 
An initial literature search was conducted using 
Medline and other reference sources to identify articles 
describing factors affecting CABG outcome7,8. This 
initial list of variables was discussed with several 
cardiac surgeons to determine what variables they 
believed were most significant in determining the 
outcome of “on-pump” solitary CABG surgery. 
Intraoperative surgical characteristics were not 
considered in the prediction model. Only variables 
available preoperatively were taken into account. The 
resulting list of 21 variables included age, gender, 
history of diabetes mellitus (DM), history of 
hypertension, prior CABG, history of stroke or transient 
ischemic attack (TIA), history of uremia or end-stage 
renal disease, history of severe liver disease, history of 
peripheral vascular disease, history of chronic 
obstructive pulmonary disease (COPD), priority of 
operation, left ventricular ejection fraction, recent 
percutaneous coronary intervention (PCI) with 
complication(s), cardiogenic shock, recent myocardial 
infarction of <1 week, prior endotracheal intubation, 
prior cardiopulmonary resuscitation (CPR), serum 
creatinine (Cr), hematocrit, and serum albumin. 
In-hospital major adverse outcomes included death, 
cardiac arrest, coma, renal failure (new-onset dialysis), 
reinfarction, cerebrovascular accident, and prolonged 
mechanical ventilation of >14 days.  
 
Data collection 
 
Detailed information of patients in the final cohort was 
obtained retrospectively after patient discharge through 
medical record abstraction by one of two researchers. 
Data collected included demographics, conditions and 
risks before procedure, last preoperative laboratory 
results, use of services, postoperative hospital course 
(adverse events), and discharge laboratory results. For 
categorical variables, missing data were coded as 
"missing," such that for a variable with 3 categories, a 
fourth was added. For continuous variables, missing 
data were managed with mean substitution. The 
average rate of missing information for the 21 
independent predictors of adverse outcomes was 2.3%. 
 
The artificial neural network (ANN) model 
 
Various formulations of a back-propagation ANN were 
used to train and predict any major adverse outcome 

after CABG from 21 independent predictive variables. 
The neural networks were generated using the software 
package STATISTICA Neural Networks (Release 4.0E) 
from StatSoft Inc. To train each ANN to identify the 
clinical patterns corresponding to the CABG outcomes, 
the data were randomly divided into 3 separate sets: a 
set for training the network, a set for cross verifying it, 
and a set for validating it. A standard technique in 
neural networks is to train the network using one set of 
data, but to check performance against a verification set 
not used in training: this provides an independent check 
that the network is actually learning something useful. 
Without cross verification, a network with a large 
number of weights and a modest amount of training 
data can overfit the training data - learning the noise 
present in the data rather than the underlying structure. 
This ability of a network not only to learn the training 
data, but to perform well on previously-unseen data, is 
known as generalization. 
 
The final best ANN model used in this study was a 
feed-forward, multilayer perceptron (MLP) network 
architecture using the back-propagation supervised 
training algorithm. Neural computation was performed 
on an IBM compatible Pentium III computer running at 
1 GHz. The ANN had an input layer with 18 nodes, a 
hidden layer with 8 nodes, and an output layer with one 
node. The ANN topology is depicted in Figure 1. When 
the root mean square (RMS) error no longer decreased 
significantly with training, that network was tested by 
calculating the classification accuracy on the validation 
set. Once the best network was identified, a pruning 
procedure was performed in which those processing 
elements that did not contribute significantly to the 
overall predictive power of the network were removed. 
The performance of the final ANN was then evaluated 
by calculating the area under the ROC curve (AUC), 
and the results compared with the other two models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Diagram of an (18 x 8 x 1) ANN model. 

 



 
The multivariate logistic regression (LR) model 
 
A multivariate logistic regression (LR) model was 
developed utilizing SPSS for Windows 10.0 (SPSS Inc). 
The model was constructed on the derivation set (n = 
463, with 10 cases containing missing data). No 
variable selection procedure was applied. All the 
variables unconditionally entered the logistic regression 
equation because they were already deemed significant 
in the second step of the variable selection process. Its 
performance was assessed with ROC analysis using the 
same validation set and the results compared with the 
other two models. 
 
The risk score (RS) model 
 
We applied a clinical prediction rule developed by 
Fortescue et al9 using multivariate logistic regression 
analysis to evaluate its performance on the same 
validation set of our study cohort. This so called 
Quality Measurement and Management Initiative 
(QMMI) score included sixteen independent predictive 
variables of major adverse outcomes (Table 1). Its 
performance was then compared with that of the other 

two models. 
 
Table 1. The QMMI score. 

Correlate OR Confidence 
Intervals 

Points 

Cr ≧3.0 mg/dL 
Age ≧80 yrs 
Cardiogenic shock 
Emergent operation 
Age 70–79 yrs 
Prior CABG 
Ejection fraction <30% 
Liver disease (history) 
Age 60–69 yrs 
Cr 1.5-3.0 mg/dL 
Stroke or TIA (history) 
EF 30%-49%  
COPD (history) 
Female gender  
Hypertension (history) 
Urgent operation 

4.4 
4.0  
3.2  
2.8 
2.5 
2.3 
2.1 
2.1 
1.9 
1.9 
1.6 
1.4 
1.5 
1.4 
1.3 
1.3 

2.8–7.0 
2.6–6.1  
1.9–5.4  
2.0–4.0 
1.8–3.4 
1.7–3.1 
1.5–3.1 
1.1–4.1 
1.4–2.6 
1.4–2.4 
1.2–2.1 
1.1–2.0 
1.1–1.8 
1.1–1.8 
1.0–1.6 
1.0–1.6 

12 
11 
10 
9 
8 
7 
6 
6 
5 
5 
4 
3 
3 
3 
2 
2 

 
From Fortescue et al

 9
: Am J Cardiol. 2001;88:1251-8. 

 

 
Table 2. Patient characteristics: comparison of derivation and validation sets. 

Characteristic Derivation (n = 423) Validation (n = 140) 
Dichotomous Variables: n (%)   
 Female gender 

Diabetes Mellitus 
Hypertension 
Prior CABG surgery 
Uremia or end-stage renal disease 
Stroke or transient ischemic attack 
Peripheral vascular disease 
Liver disease* 
COPD 
Complicated PCI  
Cardiogenic shock 
Prior endotracheal intubation* 
Prior CPR* 
Recent myocardial infarction 

128 (30.3) 
154 (36.3) 
251 (59.3) 

3 (0.7) 
12 (2.8) 
26 (6.1) 
13 (3.1) 
1 (0.2) 

12 (2.8) 
8 (1.9) 

10 (2.4) 
2 (0.5) 
1 (0.2) 

28 (6.6) 

37 (26.4) 
57 (40.4) 
69 (49.3) 
1 (0.7) 
3 (2.1) 
9 (6.4) 
4 (2.9) 
0 (0) 

3 (2.1) 
3 (2.1) 
2 (1.4) 
0 (0) 
0 (0) 

10 (7.1) 
Categorical Variables: n (%)   
 Priority of surgery 

� Emergent 
� Urgent 
� Elective 

Left ventricular ejection fraction 
� ≦30% 
� 31-40% 
� 41-50% 
� >50% 

Coronary artery stenosis 
� Left main disease 
� Three-vessel disease 
� Others 

 
7 (1.7) 
7 (1.7) 

409 (96.7) 
 

11 (2.6) 
36 (8.5) 
32 (7.6) 

344 (81.3) 
 

118 (27.9) 
276 (65.2) 
29 (6.9) 

 
2 (1.4) 
3 (2.1) 

135 (96.4) 
 

2 (1.4) 
15 (10.7) 
15 (10.7) 
108 (77.1) 

 
36 (25.7) 
98 (70.0) 
6 (4.3) 

Continuous Variables: mean (SD)   
 Age (yr) 

Serum creatinine (mg/dL) 
Hematocrit (%) 
Serum albumin (g/dL) 

64.0 (10.4) 
1.4 (1.3) 

37.7 (5.5) 
4.0 (1.5) 

63.3 (9.7) 
1.5 (1.6) 

37.7 (4.7) 
3.9 (0.5) 



 
Comparison of models 
 
ROC curves of the validation set were plotted for the 
three models (ANN, LR, and RS) and the AUCs 
calculated for comparison. The ROC curve plots the 
false-positive rate (1 - specificity) on the x-axis and the 
true-positive rate (sensitivity) on the y-axis. The area 
under the ROC curve is a measure of a model’s 
discriminatory power. The larger the area under the 
ROC curve, the more accurate the prediction model. 
The sensitivity and specificity at a cut-off value 
corresponding with the highest accuracy (minimal false 
negative and false positive results) were also computed 
and compared. 
 

RESULTS 
 
The final study population included 563 patients who 
underwent “on-pump” CABG not involving any 
concomitant procedures, with 423 patients allocated at 
random to the derivation set and the remaining 140 to 
the validation set (Table 2). Differences in preoperative 
patient characteristics were not significant across 
groups. One or more major adverse outcomes were 
found to occur in 12.3% of patients (10 cases in the 
derivation set and 3 in the validation set). Of these there 
were 42 deaths (7.5%), 30 episodes of prolonged 
mechanical ventilation (5.3%), 23 episodes of renal 
failure (4.1%), 14 strokes (2.5%), 12 episodes of 
cardiac arrest (2.1%), 9 episodes of reinfarction (1.6%), 
and 4 episodes of coma (0.7%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Comparison of ROC curves (validation 
set). 
 
Figure 2 depicts the ROC curves for the ANN, LR, and 
RS models. Results of pairwise comparison of the ROC 
curves were shown in Table 3. The ANN model 
significantly outperformed the RS model (AUC = 0.886 
vs.0.752, p = 0.043). However, the other two pairs, 

ANN vs. LR models (AUC = 0.886 vs. 0.807, p = 0.076) 
and LR vs. RS models (AUC = 0.807 vs. 0.752, p = 
0.453) performed similarly well. 
 
Table 3. Pairwise comparison of ROC curves 
(validation set). 

95% CI Pairwise comparison 
 

Standard 
Error Lower Upper 

P value 

ANN vs. LR Models 0.044 -0.008 0.165 0.076 
ANN vs. RS Model 0.066 0.004 0.263 0.043 
LR vs. RS Model 0.073 -0.089 0.199 0.453 
 
If a cut-off value corresponding with minimal false 
negative and false positive results was selected, the 
sensitivity and specificity of each model can be 
calculated and compared. (Table 4). 
 
Table 4. Testing summary on the validation set 
assuming highest accuracy. 

 ANN Model LR Model RS Model 
Sensitivity 94.1 % 88.2 % 76.5 % 
Specificity 71.7 % 73.3 % 57.5 % 

 
DISCUSSION 

 
Although several severity scores exist that attempt to 
predict outcomes after CABG surgery, most of them are 
specific for mortality prediction. Few published studies 
to date have attempted to develop a model that predicts 
major adverse outcomes including mortality9,10,11. In 
our study, we constructed and internally validated an 
ANN model that estimated the risk of major adverse 
outcomes after CABG surgery. A neural computational 
severity model such as this has the potential to meet 
several important roles, such as assisting clinical 
decision making, facilitating more accurate 
comparisons of outcomes across groups, and evaluating 
trends in cardiac surgical practices over time. 
 
The area under the ROC curve (AUC) is a measure of a 
model’s discriminatory power. According to the 
observation by Swets et al12, an AUC of ≧0.7 is 
diagnostically useful. In our study, all three models 
discriminate well (AUC≧0.7). The ANN model 
significantly outperform the risk score model (AUC = 
0.886 vs. 0.752, p = 0.043) in the validation set. The 
ANN model also has better simultaneous sensitivity 
and specificity at the cut-off value corresponding to 
highest accuracy. It seems that the ANN model has a 
higher predictive power than the QMMI score.  
 
Pairwise comparison of performance between the LR 
and RS models (AUC = 0.807 vs. 0.752) showed no 
significant difference (p = 0.453) since both models are 
based on similar statistics: logistic regression analysis.  
Though the performance of ANN (AUC = 0.886) is 
better than that of the LR model (AUC = 0.807), it is 
statistically insignificant (p = 0.076). However, the 
comparison between ANN performance and logistic 
regression is not perfect because patients with missing 
data will be excluded in logistic regression, whereas the 
network will test all patients regardless of missing data. 

 



At a cut-off value corresponding with highest accuracy, 
the ANN tends to have the best simultaneous sensitivity 
and specificity among the 3 models. We believe that, if 
a larger dataset containing more missing data is used, 
an ANN model should have better performance than 
logistic regression or risk score model. 
 
All prior studies using regression methodologies to 
predict outcome of CABG have been based on the 
assumption that all required patient information would 
be available at the time of initial evaluation. Frequently, 
information is not available, either because patients can 
be poor historians or the practitioner forgets to ask 
pertinent questions, forgets to collect key observations, 
or is unable to retrieve all laboratory results in a timely 
fashion. In this study cohort, an average of 2.3% of the 
data was missing on all patients. Yet, the ANN accuracy 
was not significantly compromised by this absence.  
 
A neural network approach is also preferable in that 
ANNs are model independent and very flexible in being 
able to use mixes of categorical and continuous 
variables. ANNs have the added advantage that they 
can learn to predict arbitrarily complex nonlinear 
relationships between independent and dependent 
variables by including more processing elements in the 
hidden layer or more hidden layers in the network. 
These advantages make the ANN a more robust 
paradigm for application to a real-world setting13,14. The 
use of the network in real time will not be difficult. The 
number of hospitals that have or will install an 
electronic medical record is growing rapidly. Once 
trained, the network could reside in the background of 
the clinical information systems. The data used by the 
network represent the standard information routinely 
collected on CABG candidates admitting to the wards 
or intensive care units. Once entered into the electronic 
record, these data could then be parsed and used by the 
network to generate a probability of the predicted 
outcome. Network accuracy could also be continuously 
improved over time because it can constantly be 
retrained as more patients are accumulated.  
 
On the contrary, the "black box" interpretation is a 
major obstacle to the acceptance of ANNs as one 
mechanism for the medical decision support systems. 
However, an accurate second opinion is often helpful in 
medical decision making with or without a detailed 
understanding of how it works. 
 
There are a number of limitations to this study that need 
to be addressed. First, the ANN was not tested in real 
time. It is not clear how physicians or surgeons will 
respond if given network predicted outcome prior to 
surgery. Second, patients with severe liver disease and 
episodes of prior endotracheal intubation or prior CPR 
were so rare that they were “pruned” during the training 
process. Finally, this study was carried out at a single 
institution. These findings must be corroborated on 
patients from multiple locations. Portability will be a 
critical factor to the future use of the ANN in this 
setting. 
 
The ANN model tends to outperform regression models 
in the prediction of postoperative major adverse 

outcomes for CABG patients and it might serve as a 
useful screening tool to stratify CABG candidates 
preoperatively into high-risk and low-risk groups. 
Physicians could then use this information to aid them 
in making their treatment and final disposition. 
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